
Quantum transport in nanostructures 

About the manifestations of quantum mechanics on 
the electrical transport properties of conductors 

V


At macro scale 
     I = V/R (Ohm’s law) 
       =  σV 
At nano scale 
     I   ?  V




Moore’s Law 

The number of transistors per microchip doubles roughly every 
three years. 



Nanoscale electronics  

Atomic point contacts 

Molecular junctions 

Fast DNA sequencing 

Tans et al. (1997) 

Scheer et al. (1998) from Nitzan et al. (2003) 

Lagerqvist et al. (2006) 

Nanotubes/wires 

Z.Q. Li et al. (2006) 

Organic electronics 

Doped Si 

polymersource drain

insulator

Poly(3-hexylthiophene)
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polymersource drain

insulator

Poly(3-hexylthiophene)



Expected effects for electrons in nanostructures


•  Quantum confinement effect 
•  Tunneling effects


•  Charge discreteness and strong electron-electron 
Coulomb interaction effects 

•  Strong electric field effects 

•  Ballistic transport effects 



 Important mesoscopic regimes




Fermi wavelength (λF): de Broglie wavelength of Fermi electrons 
           in d =  3:       λF =  23/2(π/3n)1/3 
           in d =  2:       λF =  (2π/n)1/2 
           in d =  1:       λF =  4/n 

 Important length scales


Elastic mean free path (le): average distance the electrons  
travel without being elastically scattered  

      le =  vFτe.    vF denotes the Fermi velocity of the electrons


Phase coherent length (lΦ): average distance the electrons  
travel before their phase is randomized  

      lΦ =  vFτΦ.   τΦ denotes the dephasing time of the electrons




Quantum wires and point contact




Temperature (K)                     L* (nm) 

4.2 (liquid helium)                 < 5000 

77 (liquid nitrogen)                < 100 

300 (room temperature)         < 10


Typical length scale for mesoscopic regime  


*The numbers just give an order of magnitude




•  Large number of states contribute to overall 
current 

•  Large number of electrons  

•  Resistivity, mobility, electric field, bias voltage, 
macrocopic currents are well-defined 

•  Quantum effects are averaged out by thermal 
effects 

Conduction at the macroscale 



Conduction at the nanoscale 

•  Small number of states can affect the overall current 
•  Wavefunction coherence lengths are comparable to 

characteristic device dimensions 

•  Single electrons charging effects can be significant 

•  These can amount to overall macroscopic electronic 
properties that show deviations from bulk electronic 
properties 

  



Bolztmann Transport Equation 

Based on the semiclassical transport theory, considering the distributions 
of carriers to energies and momenta, taking into account scatterings. 

The electrons obey the semiclassical equations of motion 
v(k) =  (1/ħ)∇kε(k) 
dk/dt = −e/ħ (E +v(k) ×B)


The general Boltzmann equation to first order approximation: 
v(k)�∇φ(k,r,t) − eE/ħ� ∇kφ(k,r,t) + ∂φ(k,r,t)/∂t = [∂φ(k,r,t)/∂t]scatter


Current density equals to the conductance times electric field 
j = σE 
With simplified Bolztmann equation 
σ = ne2 τD/m∗ = ne µ  
the electron mobility  µ ≡ e τD/m∗ .


 




Flow of electrons between two reservoirs 

Electrons obey the Fermi-Dirac distribution 

As T ~ 0 K, this is a step function 

A metal/semiconductor electrode Two electrodes with some other 
material (states) in between  

Availability of carriers on the left, and 
empty slots on the right, how fast the 
carriers tunnel from the left to the center and 
how fast the carriers tunnel from the center 
to the right basically determine the current. 



Molecular Break Junctions 



Four point technique 

•  Make quick measurements of conductivity on novel 
materials where contacts are not ideal 

Bulk Sample 



Thin Sheet 



t >> s  

thickness t << s  

Typical probe spacing s ~ 1 mm  



Capacitance Measurements 

•  Parallel plate capacitor 

Linear capacitor 

Parallel plate 

Dielectric constant can be measured if the dielectric thickness is known 



Capacitance Spectroscopy 

•  When  
–  semiconductors are used (surface potential and electric field 

are not linearly dependent) 

–  the dielectric layer has electric field dependent conductivity 
(loss) 

–  There are traps (or states) that can be charged and 
discharged only at certain voltages 

•  We can measure the small signal capacitance as a function of 
DC bias, and interpret C-V curves to gain information about the 
system 



C-V characterization of MOS structures 

•  Measurement of C-V characteristics 
–  Apply any dc bias, and superimpose a small (15 mV) 

ac signal 
–  Generally measured at 1 MHz (high frequency) or at 

variable frequencies between 1KHz to 1 MHz 
–  The dc bias VG is slowly varied to get quasi-

continuous C-V characteristics 



Measured C-V characteristics on an n-type Si 

ND = 9.0 × 1014 cm-3 
xox = 0.119 µm 



Doping dependence of a MOS capacitor 

Can tell you carrier concentration, dielectric thickness or constant, 
Dielectric interface trap densities, Carrier diffusion properties etc. 



2-D nanostructures:   
 graphene, metallic thin films, superlattices, … . 

1-D nanostructures:   
 carbon nanotubes,  quantum wires,  conducting polymers, … . 

0-D nanostructures:   
 semiconductor nanocrystals,   metal nanoparticles,    
 lithographically patterned quantum dots, … .	
 

Gate electrode pattern 
of a quantum dot	
 

SEM image	
 



2D electron gas (2DEG)
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λ = de Broglie wavelength of electron 
a = thickness of metal film 

M 
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Electronic Structure of 2-D Systems	
 

D(ε) = m* /π!2	



εF 
ε	



D(ε) 



Classical Hall effect  (1880 E.H. Hall) 

Lorentz-force on electron: 

stationary current: 

Hall resistance: 

Dirac flux 
quantum 

2 



2D electrons in magnetic fields: Landau levels 

coordinate transformation: 

Hamiltonian: 

R

X 

electron 
center of  

cyclotron motion 
radial vector of  

cyclotron motion 

commutation relations: 



2D electrons in magnetic fields: Landau levels 

mapping to oscillator: 

H =ħωc  R² / 2 lm
2  = ħωc  ( a+ a  + ½ ) 

Landau levels 



2D electrons in magnetic fields: Landau levels 

typical scales: 

•  length 
BB BB

magnetic length 
•  energy 

cyclotron frequency 



2D electrons in magnetic fields: Landau levels 

degeneracy of Landau levels: 
center of cyclotron motion (X,Y) arbitrary à 
degeneracy 

•  2D density of states (DOS) 

•  filling factor 

one state per area of cyclotron orbit 

# atoms / # flux 
quanta 



Quantum Hall effect 

Semiconductor heterostructure confines 
electron gas to two spatial dimensions. 

Quantization of conductivity  
for a two-dimensional electron gas  
at very low temperatures  
in a high magnetic field. 

AlGaAs 

AlGaAs 
GaAs electron gas 

B 
electron gas 

I 

V



Quantum Hall states 

B 
Landau levels 

Landau level degeneracy integer quantum Hall fractional quantum Hall 

incompressible liquid incompressible liquid 

edge states 

filled level partially filled level 
Coulomb repulsion 

orbital states 



RH = (1/ν)(h/e2) 



Electronic Structure of 1-D Systems	
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Electrical Transport in 1-D	
 

Conductance Quantization & the Landauer Formula


1-D channel with 1 occupied subband 
connecting 2 large reservoir.	
 

Barrier model for imperfect  1-D channel	
 

I n qv= Δ

Let Δn be the excess right-moving carrier density,  DR(ε) be the corresponding DOS.	
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Channel fully depleted of carriers at Vg = –2.1 V.	
 

If channel is not perfectly conducting,	
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For multi-channel quasi-1-D systems	
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Voltage Probes & the Buttiker-Landauer Formulism	
 

1,2 are current probes; 3 is voltage probe.	
 

T(n,m) = total transmission probability 
for an e to go from m to n contact.	
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In , Vn  depend on T(n,m)  →  their values are path dependent. 
 Voltage probe can disturb existent paths.	
 

Let every e leaving 1 always arrive either at 2 or 3 with no back scattering. 	
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Mesoscopic regime:   le < L <  lφ  .  	
 

Semi-classical picture:	
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Localization	
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 = average over φ*  =  average over k or ε . 	
 

Consider a long conductor consisting of a series of elastic scatterers of scattering length  le . 

Let  〈R〉 >>1,  i.e.,   R ≈ 1 & T << 1,  ( R + T = 1 ) .
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For a 1-D system with disorder,  all states become localized to some length ξ . 
Absence of extended states →  R ∝ exp( a L / ξ ) ,  a = some constant. 
For quasi-1-D systems, one finds  ξ ~ N le , where N = number of occupied subbands. 	
 

For T > 0,  interactions with phonons or other e’s reduce phase coherence to length lφ  = A T 
−α .	
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for each coherent segment.	
 

For sufficiently high T,  lφ  ≤ le  , coherence is effectively destroyed & ohmic law is recovered.   	
 

Overall  〈R〉  ≈  incoherent addition of  L / lφ   such segments.   


All states  in disordered 2-D systems are also localized. 
Only some states (near band edges) in disordered 3-D systems are localized. 



Conductance of a quantum point contact 



　GaAs/AlGaAs　interface : 
　two-dimensional electron gas 

 Quantum conductance 

⋅⋅⋅=

Ω×==

=

−−

3,2,1

1075.72 15
2

0

0

n
h
eG

nGG

Quantum point contact 



Electron flow close to a quantum point contact 
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Quantum point contact formed in STM




Electronic Structure of 0-D Systems	
 

Quantum dots:    Quantized energy levels.

e in spherical potential well:	
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( ), 0l n lj β =

β0,0  = π  (1S),   β0,1  = 4.5  (1P),   β0,2  = 5.8  (1D) 
 
β1,0  = 2π  (2S),   β1,1  = 7.7  (2P)	
 

βn, l  = nth root of jl (x).	
 



Semiconductor Nanocrystals	
 
CdSe nanocrystals	
 

For CdSe:	
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For R = 2 nm, 	
 0,1 0,0 0.76 eVε ε− =

For e,  ε 0,0  increases as R decreases. 
For h,  ε 0,0  decreases as R decreases. 
→  Eg  increases as R decreases.	
 

Optical spectra of nanocrystals can be tuned 
continuously in visible region. 
 
Applications:  fluorescent labeling,  LED.	
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Strong transition at some ω in quantum dots → laser ?	
 



Metallic Dots	
 

Small spherical alkali  metallic cluster	
 

Na  
mass spectroscopy	
 

Mass spectroscopy (abundance spectra): 
Large abundance at cluster size of magic 
numbers ( 8, 20, 40, 58, … ) 
→  enhanced stability for filled e-shells.	
 

Average level spacing at εF :	
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For Au nanoparticles with  R = 2 nm,  
Δε ≈ 2 meV. 
whereas  CdSe  gives  Δε ≈ 0.76 eV. 
→  ε  quantization more influential in  

semiconductor.	
 



Optical properties of metallic dots dominated by surface plasmon resonance.	
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Surface plasma mode at singularity: 	
 
3
p
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ω
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For Au or Ag,  ωp ~ UV,  ωsp ~ Visible.	
 

indep of R.	
 

→  liquid / glass containing metallic nanoparticles are brilliantly colored. 	
 

Large E just outside nanoparticles near resonance enhances weak optical processes. 

This is made use of in Surface Enhanced Raman Scattering (SERS), & Second 

Harmonic Generation (SHG).	
 



Discrete Charge States	
 
Thomas-Fermi approximation:	
 1 1N N eµ ε ϕ+ += − 1N gNU eVε α+= + −

U = interaction between 2 e’s on the dot  =  charging energy. 
α = rate at which a nearby gate voltage Vg shifts φ of the dot.	
 

Neglecting its dependence on state,  	
 

2eU
C

=

2

1
1

g N N
eV

e C
ε ε

α +

⎛ ⎞
Δ = − +⎜ ⎟

⎝ ⎠

gC
C

α =

C = capacitance of dot. 
Cg = capacitance between gate & dot	
 

If dot is in weak contact with 
reservoir, e’s will tunnel into it 
until the µ’s are equalized.	
 

Change in Vg required to add an e is	
 



U depends on size &shape of dot & its local environment.	
 

For a spherical dot of radius R surrounded by a spherical metal shell of radius R + d,  	
 

2e dU
R R dε

=
+

For  R = 2 nm,  d = 1 nm &   ε = 1,  we have 
  U = 0.24 eV    >>    kBT = 0.026eV     at  T = 300K 

→   Thermal fluctuation  strongly supressed.	
 

For metallic dots of 2nm radius,  Δε ≈ 2meV  →   ΔVg  due mostly to U. 
For semiC dots, e.g., CdSe,  Δε ≈ 0.76 eV  →   ΔVg  due both to Δε  &  U.  	
 

Charging effect is destroyed if tunneling rate is too great. 
Charge resides in dot for time  δt ≈ RC.   ( R = resistance )	
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Quantum fluctuation smears out charging effect when  δε ≈ U, i.e., when R ~ h / e2 .   	
 



Conditions  for  a  Coulomb  Blockade 

1) The Coulomb energy e2/C needs to exceed the thermal energy
 kBT. 
Otherwise an extra electron can get onto the dot with thermal
 energy instead of being blocked by the Coulomb energy.  A dot 

 needs to be either small (<10 nm at 300K) or cold (< 1K for a µm
 sized dot). 
 
2) The residence time  Δt=RC  of an electron on the dot needs to
 be so long that the corresponding energy uncertainty  ΔE=h/Δt =

 h/RC is less than the Coulomb energy e2/C . That leads to a
 condition for the tunnel resistance between the dot and source
/drain:   R > h/e2  ≈  26 kΩ   

   



Electrical Transport in 0-D	
 

For   T < ( U + Δε ) / kB ,  U & Δε  control e flow thru dot.  	
 

Transport thru dot is suppressed 
when µL & µR  of leads lie between 
µN & µN+1  (Coulomb blockade)


Transport is possible only when 
µN+1 lies between µL & µR . 	
 

→  Coulomb oscillations  of  G( Vg ).	
 



Coulomb Oscillations 	
 
GaAs/AlGaAs 
T = 0.1K	
 

Thermal broadening	
 Breit-Wigner lineshape	
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Coulomb oscillation occurs whenever 
U > kBT, irregardless of Δε . 
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Single  Electron  Transistor  (SET) 

Cg 

 dot 

Vg 

e-
 e- 

   gate 

      source   drain 

 channel 

 A  single  electron transistor is similar to a
 normal transistor (below), except  

1)  the channel is replaced by a small dot. 

2)  the dot is separated from source and drain
 by thin insulators. 

 An electron tunnels in two steps:  

           source → dot → drain 

       The gate voltage Vg is used to control the
 charge on the gate-dot capacitor Cg . 

     How can the charge be controlled with the
 precision of a single electron?  

 

 

 Kouwenhoven et al., Few Electron Quantum
 Dots, Rep. Prog. Phys. 64, 701 (2001).  



Nanoparticle attracted
 electrostatically to the
 gap   between   source
 and   drain  electrodes. 
The gate is underneath. 

Designs for  
Single Electron Transistors 



Two Step Tunneling 
source → dot → drain 

drain source 

    dot 

empty 

N (filled) 

N+1 filled 

empty 

(For a detailed explanation see the annotation in the .ppt version.) 



Charging a Dot,  One  Electron at a Time 
Sweeping the gate voltage  Vg
 changes the charge  Qg on the  
 gate-dot capacitor Cg . To add       
 one electron requires the vol-  
 tage  ΔVg ≈ e/Cg since Cg=Qg/Vg. 

The source-drain conductance         
 G is zero for most gate voltages,
 because putting even one extra
 electron onto the dot would cost
 too much Coulomb energy. This  
 is called  Coulomb  blockade . 

Electrons can hop onto the dot
 only at a gate voltage where the
 number of electrons on the dot 
 flip-flops between N and N+1.        
 Their time-averaged number is        
 N+½ in that case. 

The spacing between these half
-integer conductance peaks is an
 integer.   

 dot 

ΔVg ≈ e/Cg 
 

Electrons  
on the dot 

    N-½    N+½ 

Cg 

e-
 e- 

Vg 

    NN-1 



The SET as Extremely Sensitive Charge Detector 

At low temperature, the conductance peaks in a SET become very sharp. 

Consequently, a very small change in the gate voltage half-way up a peak
 produces a large current change, i.e. a  large amplification. That makes the
 SET extremely sensitive to tiny charges. 

The flip side of this sensitivity is that a SET detects every nearby electron.
 When it hops from one trap to another, the SET produces a noise peak. 

Sit here: 



Gate Voltage versus Source-Drain Voltage 

The situation gets a bit confusing, because there are two voltages that can
 be varied, the gate voltage Vg and the source-drain voltage Vs-d . 

Both affect the conductance. Therefore, one often plots the conductance G
 against both voltages (see the next slide for data).  

Schematically, one obtains “Coulomb diamonds”, which are regions with
 a stable electron number N on the dot (and consequently zero
 conductance).  

G 

Vs-d 
Vg 

Vg 0 1 2 3 4 

 1/2                        3/2                       5/2                        7/2 





Including the Energy Levels of a Quantum Dot 

Contrary to the Coulomb blockade model, the data show Coulomb diamonds
 with uneven size. Some electron numbers have particularly large diamonds, 
 indicating that the corresponding electron number is particularly stable.  

This is reminiscent of the closed electron shells in atoms. Small dots behave
 like artificial atoms when their size shrinks down to the electron wavelength.  

Continuous energy bands become quantized                                                         
 (see Lecture 8). Adding one electron requires                                                           
 the Coulomb energy U plus the difference ΔE                                                          
 between two quantum levels  (next slide) . If a                                                     
 second electron is added to the same quantum                                                        
 level (the same shell in an atom), ΔE vanishes                                                                                    

 and only the Coulomb energy U is needed. 

 

The quantum energy levels can be extracted from the spacing between                
 the conductance peaks  by  subtracting  the  Coulomb energy  U = e2/C . 



Quantum Dot in 2D (Disk) 

Filling the Electron Shells in 2D 



Shell  Structure  of
 Energy  Levels  for
 Various Potentials 

Magic Numbers (in 3D) 

Potentials: 

E 



Precision Standards from “Single” Electronics 

Count individual electrons, pairs, flux quanta   

(f = frequency) 

Current I 
 Coulomb
 Blockade 

Voltage V 
 Josephson 

 Effect 

Resistance R  
 Quantum

 Hall  Effect 

I = e f V = h/2e · f 

V/I = R = h/e2 



Quantum interference 

In general: δg small, 
random sign 

tnm,α , tnm,β : amplitude for 
transmission along paths α, β	



α	


β	





Quantum interference 

Three prototypical examples: 
•  Disordered wire 
•  Disordered quantum dot 
•  Ballistic quantum dot 



Scattering matrix and Green function 
Recall: retarded Green function is solution of 

In one dimension: 

εk = ε and v = h-1dεk/dk Green function in channel basis: 

r in lead j; r’ in lead k 
Substitute 1d form of Green function 

If j = k: 



Aharonov-Bohm (A-B) Effect 
 

Illustration of interference experiment for Aharonov-Bohm effect 



A-B Effect 

•  Comparison of non-B and B simulations 



AB ×∇== 0 BA =×∇



A-B Effect 

•  Formulations 

∫ ⋅=
P
dxAq

!
φ

!
Φ

=Δ
q

φ

!
qVt

−=Δφ

(Magnetic A-B Effect) 

(Electric A-B Effect) 



Ring Oscillations 

Ring Oscillation without E/B Field 



Ring Oscillations 

Ring Oscillations with E/B Field 



Ring Oscillation 

eNWt
BrR
2

2π
=Δ



A-B Ring Applications 

A-B Ring in Semiconductor 



A-B Ring Applications 

A-B Ring in Metal 



A-B Ring Applications 

A-B oscillation in a Ring with a QD connected in series 



A-B Ring Applications 

A-B interferometer 


